

➢ 3D Shapes are solid objects that have three dimensions. > These dimensions are length, width and height.

Examples of 3D shapes

Types of 3D shapes

> Polyhedrons

> Curved Solids

3D shapes

www.kooracademy.com

Sphere

Polyhedrons are 3D shapes.

The polyhedrons are also called the **Polyhedra**.

Polyhedrons should have straight edges

Examples

Cube

Cuboid

www.kooracademy.com

Pyramid

The 3D shapes that have curved surfaces are called curved solids.

Examples

Sphere

Cone

Three dimensional shapes

Cuboid

Basic properties : Faces, Vertices or corner, Edges

Faces

Faces are the surfaces on the outside of a shape

Vertices or corners

Vertices or corners are where two or more edges meet

Edges are the lines where two faces meet

3d shapes

www.kooracademy.com

Faces er, Edges

shape vertices **K**

> It is a 3-D shape. > It has six faces. > All sides are equal.

Examples

Dice, Ice cubes, Gift box.

Cube

➢ It has 8 vertices and 12 edges.

Cuboid

- > It is a 3-D shape.
- > It has six faces.
- Its opposite sides are equal.
- First Has 8 vertices and 12 edges.

Examples

Bricks, Match box, Book. Bricks

Cuboid

www.kooracademy.com

Book

> It is a **3-D shape**. cylinder. Fit has 3 faces.

Examples

Two bases lie in upper and lower surfaces in a

Height is the distance between the two bases.

> It has 2 edges and no vertices.

- > It is a 3-D shape. ► It has one surface. > All points on the surface are at the same distance from the centre.
- > It has no vertices and edges.

Examples

Laddu, Globe, Ball.

Sphere

www.kooracademy.com

O – Centre point OA - Radius

- > It is a 3-D shape.
- **Base** of a cone is circular.
- the base is called as height.

Examples

> The distance from the top of the cone to the center of

The **distance** from the **apex** to any point lying on the circumference of base is called as slant height.

> The height and slant height are not equal

Cone ice cream, Party cap.

www.kooracademy.com

L – Slant height h – Height r - Radius

Name o

cube

cuboi

cone

cylin

spher

3D Shape Properties

of the shapes		
		$TSA = 6a^2$
		$LSA = 4a^2$
		Volume = a^3
id		TSA = 2 (1w + v)
		LSA = 2h(1 + w)
		Volume = a^3
e		$TSA = \pi r(1 + r)$
		$LSA = \pi rl$
		Volume = $(1/3)$
lder		$TSA = 2 \pi r(h+$
		Volume = $\pi r^2 h$
re		$TSA = 4\pi r^2 squ$
		Volume = $(4/3)$

www.kooracademy.com

Lateral surface area

Total surface area

Formulas

(square units)

(square units)

(cubic units)

wh + lh) (square units)

w) (square units)

(cubic units)

(square units)

(square units)

) **π** r²h (cubic units)

+r) (square units)

(cubic units)

uare units

)Πr³ cubic units

