

Rules:

Note the beginning of the line and ending of the line, you want to measure.

The beginning must be in 0 .
Look at the other end of the line and note where it falls on. That number is your measurement in centimeter.

If the end of the line doesn't land exactly on a centimeter mark, there are smaller markings between the centimeters called millimeters. Count the number of mm past the whole cm mark.

Write down the length of the line in centimeter. Including any millimeter (Divide 10) if you used them.

Example:

Example : 1 Measure the length $P Q$?

||ा|||
$\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
Solution: The beginning of the line (P) is at 0 .
The end of line (Q) line crossed 4 but didn't
reach 5 . So, therefore, it is denoted by 4 cm .

After 4 cm , the line passed 4 small lines.
Therefore, it is denoted by 4 mm .

The length of the line segment is PQ is 4.4 cm P $\quad 4.4 \mathrm{~cm}$ Q

$\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

Example : 2 Measure the length $P Q$?

$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
6
8
9
10

Solution:

The beginning of the line (P) is at 0 .
The end point of the line (Q) is at 5 , therefore, it is denoted by 5 cm .

The length of the line segment is PQ is 5 cm

Draw line segment of given length

Example : 1

Draw a line segment of length $\mathrm{PQ}=4.2 \mathrm{~cm}$ using ruler.
Solution:
Step: 1
Draw a line ' I ' and mark a point ' \mathbf{P} '

P
Step: 2
Measure 4.2 cm using ruler as placing the pointer at ' 0 ' and the pencil pointer (Q) at 4.2 cm

$\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
Step: 3
$P Q$ is the required line segment of length 4.2 cm

Example : 2

Draw a line segment of length $\mathrm{PQ}=6 \mathrm{~cm}$ using ruler.
Solution:
Step: 1
Draw a line ' I' and mark a point ' \mathbf{P} '

P
Step: 2
Measure 6 cm using ruler as placing the pointer at ' 0 ' and the pencil pointer (Q) at 6 cm

Step: 3
$P Q$ is the required line segment of length 6 cm

Example : 3

Draw a line segment of length $\mathrm{PQ}=7.5 \mathrm{~cm}$ using ruler.
Solution:
Step: 1
Draw a line ' I' and mark a point ' \mathbf{P} '

P
Step: 2
Measure 7.5 cm using ruler as placing the pointer at ' 0 ' and the pencil pointer (\mathbb{Q}) at 7.5 cm

Q

$\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
Step: 3
$P Q$ is the required line segment of length 7.5 cm

P
 7.5 cm

Example : 4

Draw a line segment of length $\mathrm{PQ}=9 \mathrm{~cm}$ using ruler.
Solution:
Step: 1
Draw a line ' I ' and mark a point ' \mathbf{P} '

P
Step: 2
Measure 9 cm using ruler as placing the pointer at ' 0 ' and the pencil pointer (Q) at 9 cm

P
 9 cm

012
3
4
5
6
7
8
$9 \quad 10$

Step: 3
$P Q$ is the required line segment of length 9 cm

Parallel lines

What is parallel lines?

The lines that never intersect and are equidistant are parallel.

The slope of parallel lines is always equal.

The symbol for parallel line is II It is denoted by $A B \| C D$

Example of parallel lines

PG II RS

KY II MN

Real life examples of parallel lines

Stumps

Powerlines

Door

Ladder

Bridge

Perpendicular lines

What is perpendicular lines?

The lines which make right angles at the point of intersection are perpendicular.

If two lines are perpendicular to each other, the angle between them will be 90°

The symbol for perpendicular lines is \perp

The denoted by AOB \perp COD

Example of parallel lines

POST CARD
my homecerpuscomas
Q R
$\mathrm{MN} \perp \mathrm{NO}$

Real life examples of perpendicular lines

Trigonometry

Stairs

