

Measure line segment

Rules:

- The beginning must be in 0.
- Look at the other end of the line and note where it falls on. That number is your measurement in centimeter.
- If the end of the line doesn't land exactly on a centimeter mark, there are smaller markings between the centimeters called millimeters. Count the number of mm past the whole cm mark.
- Write down the length of the line in centimeter. Including any millimeter (Divide 10) if you used them.

Example:

Example: 1 Measure the length PQ?

Solution:

The beginning of the line(P) is at 0.

The end of line(Q) line crossed 4 but didn't reach 5. So, therefore, it is denoted by 4 cm.

After 4 cm, the line passed 4 small lines. Therefore, it is denoted by 4 mm.

The length of the line segment is

PQ is 4.4 cm

Solution:

The beginning of the line(P) is at 0.

The end point of the line(Q) is at 5, therefore, it is denoted by 5 cm.

The length of the line segment is PQ is 5 cm

Draw line segment of given length

Draw a line segment of length PQ = 4.2 cm using ruler.

Solution:

Step: 1

Draw a line ' L' and mark a point ' P'

P

Step: 2

Measure 4.2 cm using ruler as placing the pointer at '0' and the pencil pointer (Q) at 4.2 cm

Step: 3

PQ is the required line segment of length 4.2 cm

P 4.2 cm Q

Draw a line segment of length PQ = 6 cm using ruler.

Solution:

Step: 1

Draw a line ' L' and mark a point ' P'

P

Step: 2

Measure 6 cm using ruler as placing the pointer at '0' and the pencil pointer (Q) at 6 cm

Step: 3

PQ is the required line segment of length 6 cm

Draw a line segment of length PQ = 7.5 cm using ruler.

Solution:

Step: 1

Draw a line 'l' and mark a point 'P'

P

Step: 2

Measure 7.5 cm using ruler as placing the pointer at '0' and the pencil pointer (Q) at 7.5 cm

Step: 3

PQ is the required line segment of length 7.5 cm

Draw a line segment of length PQ = 9 cm using ruler.

Solution:

Step: 1

Draw a line 'l' and mark a point 'P'

P

Step: 2

Measure 9 cm using ruler as placing the pointer at '0' and the pencil pointer (Q) at 9 cm

Step: 3

PQ is the required line segment of length 9 cm

P 9 cm Q

Parallel lines

What is **parallel lines**?

The lines that never intersect and are equidistant are parallel.

- \bigstar
- The slope of parallel lines is always equal.
- \star

The symbol for parallel line is II

It is denoted by AB II CD

Example of parallel lines

Real life examples of parallel lines

Stumps

Powerlines

Ladder

Phone

Door

Bridge

Escalator

Perpendicular lines

What is **perpendicular lines**?

If two lines are perpendicular to each other, the angle between them will be 90°

 \bigstar The symbol for **perpendicular lines** is \bot

★ The denoted by AOB ⊥ COD

Example of parallel lines

MN _L NO

PQ ⊥ QR

Real life examples of perpendicular lines

Trigonometry

